
1st. f. Heat Moss Tran$t~. Vol. 24. No. 12. pp. 19913 1992. 1981. #i7-931~~8l~l2199~3 ~2~/~ 
Printed in Great Britain 8 1981 Pergaman Press Ltd. 

TOTAL TEMPERATURE-VELOCITY RELATION IN TURBULENT 
COMPRESSIBLE BOUNDARY LAYERS 

A. J. LAIXRMAN* 

Ford Aerospace and Communications Corp., Newport Beach, CA 92663, U.S.A. 

NOMENCLATURE 

=(Y-l)M;; 
enthalpy ; 
pressure ; 
mixed Prandtl number; 
= (h, - hJl(h,, - k); 
velocity ; 
streamwise distance ; 
distance normal to wall : 
= (bJr,),(dp/dx), pressure gradient parameter 
where subscript Odenotes constant pressure region 
just upstream of adverse pressure gradient ff ow ; 
boundary layer thickness; 
boundary layer velocity thickness; 
=t-Pr,; 
specific heat ratio; 
density ; 
shear stress. 

Subscripts 

0, stagnation condition ; 
W, wall condition ; 
%, free stream or edge condition ; 

Superscript 
denotes normalization by free-value value. 

‘rf(E STUDY Of the total tem~ratUr~-VelOCity profik across 
the compressible turbulent ~undary layer has been a subject 
of continued technical importance for a number of years (e.g. 
see the work of Meier and Rotta f I], and Meier et al. [2]). For 
zero pressure gradient (ZPG) boundary layers, the classical 
Crocco relation 7‘= if is restricted to unity Prandtt number, 
an assumption made to eliminate the turbulent shear stress 
terms from the combined energy-momentum equation and 
permit, thereby, a simple and direct solution. Even when 
applied to non-unity Prandtl number flows, the linear Crocco 
relation offers an adequate representation for boundary 
layers with finite heat transfer. However, for the adiabatic 
case, it fails to predict the total temperature overshoot 
observed in numerous experiments and confirmed by the 
numerical analysis of Van Driest [3]. In an attempt to 
account for the effects of non-unity Prandti number, Wilson 
[4] developed a 7- ti relation based on the turbulent 
Reynolds analogy and an adiabatic wall t~rn~rat~re profile 
postulated earlier by Squires [5]. However, Wilson’s T - 0 
expression does not satisfy the boundary condition T = 1 .O at 
i?= 1.0. Whitfield and High [6] adopted a more rigorous 
approach by introducing an approximate model for the 
turbulent shear stress distribution into the energy- 
momentum equation and derived an analytical solution 
which provides reasonable agreement with experimental 
observations (e.g. see [7]). In a more recent study [8,9] of the 
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effects of an adverse present gradient (APG) on a supersonic 
turbulent boundary layer, it was found that the T vs 6’ 
relation is insensitive to the pressure gradient although the 
shear stress distribution is apparently strongly dependent on 
flks,, (the shear stress results are described in [8], while the 
details of the To measurements and of the 7 - 0 relation are 
documented in the morecomprehensive technical report [9]), 
It is of interest, therefore, to examine more closely the 
implications of the Whitfield and High solution. 

The combined energy-mo~ntum equation can be ex- 
pressed as [6] : 

dzI; 1 dr dh 
--+(l-Pr,);~~+Pr~(~-1)M~=O (1) 
dLt2 

where, using the Whitfield-High notation, the overbars 
represent normalization with respect to the free stream values 
(i.e. fi- h/h,, 0 = U/U,). Whitfield and High assume that 
the Reynolds shear stress is proportional to the turbulent 
kinetic energy which, on the basis of an earlier study [lO], 
leads to the following approximation for ZPG flows: 

t 
- -s_ E exp[ - 4(y/b)‘/*]. 
rw 

(2) 

With the further assumption that the velocity profile can be 
expressed as a power law: 

Whitfield and High show that equation (1) can be solved in 
terms of a power series in the form: 

K(0) = r;,(O) + c/i,(O) + . . . (3) 

where I: = (1 - Pr,) and, with good accuracy, higher order 
terms in c can be neglected. 

Returning to equation (2), the density ratio (using a typical 
measured adiabatic wall profile for M, = 3 and dp/dx = 0), 
the exponential term and the ratio r//~, have been plotted vs 
y/S in Fig. 1. It is seen that the density change across the 
subiayer is much larger than the change in the exponentiat 
term so that t/r, reaches peak value of about 1.5 at 
y/S 5 0.15. As shown in [8l, the shear stress distribution in 
Fig. 1 is similar to that expected for &, = 0.4. In a recent 
studv. Sanborn fl 11 concluded that for dp/dx = 0, the shear 
stres~distributi& r&, vs. yf6 is closely approximated by the 
exponential term in equation (2)and Fig. 1. Consequently, the 
Whittield-High analysis has been repeated using the follow- 
ing expression for the turbulent shear stress distribution in 
ZPG boundary layers: 

I = exp[ - 4(~/S)5’2]. 
rur 

Note that at y/S = 0, equation (4) is equivalent to equation 
(2). Assuming again the power law velocity profile and 
repeating the power series solution utilized by Whitfield and 
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FIG. 1. Whitfield-High [6] model of turbulent shear stress 
distribution across the ZPG boundary layer. 

High, it can be shown that to first order in I:, the solution for 
an adiabatic wall is: 

8~0” 
l- 

T= 02 
(a+l)(a+2) I 

r 8a 1 
(5) 

I (a: + l)(a + 2) J 

where a = (5/2)m. Thus, to Is&order, the T- ii relation is 
independent of both M, and Pr, although it does depend on 
the velocity power law exponent m. It is interesting to note 
that the correction introduced by expressing the turbulent 
shear stress distribution with equation (4) represents a 
departure from the Walz quadratic law [12] rather than the 
linear Crocco relation. To verify that the power series 
solution for k(o) converges rapidly, equation (1) was solved 
retaining terms of order 2. While the result for T now includes 
a dependence on l:, it differs from the lst-order solution by less 
than 1%. 

For the case of constant wall temperature (finite heat 
transfer), and following the same procedure used for the 
adiabatic case, we obtain for the T- 0 relation: 

T=O 1+ 
i 

I: 4Aa 

1+;-ri, 
(a + l)(a + 2) (1 - “+i) 

-&(l ++)(l - +l -u)]}. (6) 

Note that in this case, the Crocco relation T - 0 is recovered 
when c = 0. The consequences of the present solutions for 7 
vs U will now be considered. For the adiabatic case, equation 
(5) is plotted in Fig. 2 for several values of m and is compared 
to the Whittield-High [6] solution (for MI = 3, Pr, = 0.88, 
m = 7) and typical experimental data (for the same Mach 
number). It is seen that shape of the 7 vs 0 curve given by 
equation (5) is quite similar to the solution of Whitfield and 
High [6]. In addition, increasing the value of m shifts 
equation (5)closer to the data. A comparison of the power law 
velocity profile for several values of m to typical experimental 
ZPG adiabatic wall velocity profile data indicates that 
generally the power law profile does not provide a good 
representation of the data inasmuch as the value of m which 
fits the experimental profile increases with y/S. In Fig. 2, this 
implies that T- D relation shifts toward curves with increas- 
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FK. 2. Non-dimensional total temperature-velocity profiles 
for non-unity Prandtl number, ZPG flow adiabatic walls 

showing effect of exponent in velocity power law. 

ing values of m as 0 increases. In view of the sensitivity of 
equation (5) to the exponent m it would be of interest to solve 
the basic equation using a more realistic velocity profile. This, 
however, would require a numerical solution (e.g. see [2]). 

It should be pointed out that for the adiabatic case, the 
temperature difference T, Ir - T, is not large and for the 
present case where M, = 3, is only about 18-20°C. 
The parameter t is quite sensitive to temperature and, 
for example, an increment of 0.1 in T represents only a 2°C 
change in the local total temperature. Hence, the apparently 
large differences in Fig. 2 correspond to only a few degrees in 
absolute temperature. With this in mind, it is suggested that 
the T, distribution across the boundary layer is insensitive to 
the model assumed for the turbulent shear stresses. This may 
explain why the measurements reported in [8,9]. where the 
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FIG. 3. Experimental non-dimensional profiles of total tem- 
perature vs velocity for APG adiabatic boundary layer. F 
and A denote forward and aft positions on the constant dp/d.v 

compression ramps [8, 93. 
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pressure gradient is shown to produce large changes in the 
shear stress distribution, indicate similar results for the 
variation of 7 vs 0. This is illustrated in Fig. 3 where rf; vs 0 
has been plotted for dp/ds = 0 and for forward and aft 
positions on the two constant dp/dx compression ramps used 
to generate the APG flows. The similarity in the T profiles is 
quite obvious and, in general, differences from the dp/dx = 0 
case cannot be distinguished. 

Before closing this discussion, it is instructive to examine 
the solution for the ZPG constant wall temperature case. A 
plot of equation (6) for M , = 3, Pr, = 0.88, nr = 7 and 
several values of wall temperature is presented in Fig. 4 where 
it is compared to the Crocco relation, the Whitfie~d-High [6] 
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FK. 4. ENect of heat transfer on total temperature-velocity 
profiles for non-unity Prandtl number, ZPG boundary layers. 

solution and typical experimental data [7]. The differences 
between equation (6) and the solution of Whitfield and High 
are quite small, both are in good agreement with the data, and 
it is apparent that even for modest heat transfer rates (i.e. the 
T,,,/T, I = 0.71 case) the classical Crocco relation is a good 
approximation to the data. 
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